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Steps, kinetic anisotropy, and long-wavelength instabilities in directional solidification
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We consider the effect of anisotropic interface kinetics on long-wavelength instabilities during the direc-
tional solidification of a binary alloy having a vicinal interface. Linear theory predicts that a planar solidifica-
tion front is stabilized under the effect of anisotropy as long as the segregation coefficient is small enough,
whereas a novel instability appears at high rates of solidification. Furthermore, the neutral stability curve,
indicating the values of the principal control paraméterre the morphological numbeor which the growth
rate of a sinusoidal perturbation of a given wavelength changes its sign, is shown to have up to three branches,
two of them combining to form an isola for certain values of the control parameters. We identify conditions for
which linear stability theory predicts the instability of the planar interface to long-wavelength traveling waves.
A number of distinguished limits provide evolution equations that describe the resulting dynamical behavior of
the crystal-melt interface and generalize previous work by Sivashinsky, Brattkus, and Davis and Riley and
Davis. Bifurcation analysis and numerical computations for the derived evolution equations show that the
anisotropy is able to promote the tendency to supercritical bifurcation, and also leads to the development of
strongly preferred interface orientations for finite-amplitude deformati®H063-651X99)02605-1

PACS numbegps): 64.70.Dv, 81.30.Fb, 47.20.Ky

I. INTRODUCTION investigate the implications of an anisotropic kinetic law
given by an attachment coefficient that is directly propor-
During crystal growth from a fluid phase with a vicinal tional to the local slope of the interface, measured relative to
interface, the interface velocity is generally well- the singular orientation.
approximated as a linear function of the local undercooling The effect of attachment kinetics on the morphological
at the interface. For a vicinal surface, the constant of proporstability of a growing crystal has received considerable at-
tionality (the interface-attachment coefficigns a strongly tention(see, e.g., Ref4]). For the growth of a pure material
anisotropic function of the interface orientation. The characinto a hypercooled melt, finite attachment kinetics can lead
teristic effects of interface attachment kinetics contrast withto constant velocity growth; a number of linear and nonlinear
the assumption of local thermodynamic equilibrium; they areanalyses of the hypercooled growth with kinetics have been
manifested in a number of materials processing applicationgerformed5-7], although the number of experimental stud-
including vapor growth 1], solution growth[2], and melt ies in this regime is limitedl8]. For directional solidification
growth [3]. of a binary alloy into a positive temperature gradient, the
For a vicinal surface, the microscopic picture of a crystal-effect of an isotropic kinetic coefficient is merely to modify
fluid interface consists of a series of atomically flat terraceghe interface temperature; an exchange of linearized stabili-
that are interrupted by steps of roughly atomic dimensions. Ifies generally holds, and the conditions at the onset of insta-
the steps are well separated from each other, the mean ofility are unaffected by kinetic coefficient. The effect of a
entation of the interface then differs only slightly from the mild anisotropy is to generate traveling wave instabilities at
singular orientation of the terraces, and the motion of thehe onset[9]. The conditions at the onset are again un-
interface in its normal direction proceeds by layer growthchanged if the anisotropy is mild enough in which case a
that occurs at the step locations. Therefore, the limiting facquasistatic treatment of the diffusion field is a good approxi-
tors for the growth are the attachment rate at the steps andation, and a weakly nonlinear treatment of the problem
the step density. This view implies that an interface withou10] predicts the formation of tilted cells in two dimensions.
steps, which consists entirely of the singular orientation, idf the kinetic anisotropy is strong enough, however, a quasi-
stationary, resulting in the strong orientation dependencstatic analysis becomes inadequate, and the onset of instabil-
(anisotropy of the interface-attachment coefficient for vici- ity can be significantly modified. In this case, the effect of
nal interfaces. In practice, for large enough undercoolingthe traveling-wave instability is to produce a phase differ-
steps on a singular interface can arise via two-dimensionance between the perturbed interface and the solute field in
nucleation of a new layer in the interior of a terrace, and viawhich lateral solute transport can significantly stabilize the
defects in the surface, such as screw dislocations that act asterface[2]. This kinetic stabilization has also been studied
step sources. Once steps are present on a singular surface, iheconjunction with shear flows parallel to the interface,
mean orientation differs from the singular orientation, andwhich tend to interact strongly with the lateral step motion
motion of the interface in its normal direction can occur at a[3].
finite rate as material is added at the steps. In this paper, we In various problems of crystal growth cited above, pat-

1063-651X/99/56)/562912)/$15.00 PRE 59 5629 ©1999 The American Physical Society



5630 H. P. GRIMM, S. H. DAVIS, AND B. McFADDEN PRE 59

terns of long wavelength tend to be favored, suggesting thah the liquid regionH (x,t) <z<«. The effects of lateral con-
the morphological stability theory may be extended to in-finement of the system will be neglected, and solutions that
clude nonlinear effects by taking advantage of the disparatare periodic inx will be assumed. We also impose the far-
length scales in the directions tangential and normal to théeld boundary conditiorC* —C,, asz—~. At the crystal-
growth direction. Long-wave theories of this general typemelt interfacez=H(x,t) we have conservation of solute
have been developed for directional solidification studies

without kinetics by a number of autho[d]; examples in- —D(C*,—H,C*)=[V+H](1-k)C, 3)
clude the work of Sivashinskjl1], Riley and Davis[12],

and Brattkus and Davigl3]. A long-wavelength theory that 4nq the modified Gibbs-Thomson equation

generalizes the work of Sivashinsky by incorporating the ef-

fects of weak kinetic anisotropy has been considered by (V+H,)

Young, Davis, and Brattkus; Novick-Cohéi¥]| generalized
the treatment of Sivashinsky to include the effects of non- V1+H;
equilibrium thermodynamics and derived a form of the
Kuramoto-Sivashinsky equation for long wave instabilities.Here T,, is the melting point of the pure materiat is the
Hoyle, McFadden, and Dav[4d5] investigated the effects of liquidus slope] is the capillary constank’ is the interface
surface-tension anisotropy on pattern selection during the s@urvature, andg3 is the anisotropic interface-attachment co-
lidification of a binary alloy, and Golovin and Dav[46] efficient. We shall assume that this kinetic coefficient has the
considered the effect of anisotropic surface tension on théorm [2]

hypercooled growth of a pure material.

n the following se_zction we formulate_the go_verr_1ing_ equa- B(H,) = Ba(p+H,), (5)
tions of the model, in particular the anisotropic kinetic law,
and discuss the linear theory that describes the morphologi- — ) ) )
cal stability of the planar state. In Sec. Ill we consider long-VN€rep represents the orientation of the planar interface
wavelength limits of the governing equations in a variety of =~ O With respect to the singular orientation afid is a con-
limits: First, when including only small effects of anisotropy, Stant- The velocity and temperature of the planar interface
we recover the results of Youreg al, and then show how a are therefore related by

similar scaling may be used to take into account larger ef-
fects. We explain why there is no simple extension of the
work of Brattkus and Davis and develop a long-wave equa-
tion for a somewhat similar scaling which we show to be
valid far beyond the limits of the isotropic case. Finally, we
use the scalings of Riley and Davis to investigate kinetic

=BH){Ty+mC* —TyI'K-T(H)}. 4

Coo
V=BstE[TM+m?—T(O) . (6)

A. The rescaled equations

anisotropy. Conclusions are presented in Sec. IV. In order to get dimensionless variables, we rescale lengths
with D/V, time with D/V?, and replace the physical concen-
Il. GOVERNING EQUATIONS AND LINEAR THEORY tration C*(x,z,t) by (D Gc/V)C(x,z—H(x,1),1)+C.. /K,

whereG-=(V/D)C.(k—1)/k is the concentration gradient
We consider the one-sided directional solidification of aat the planar interface. Note that we mapped the interface to
binary alloy in a reference frame moving with the velocity the plane by replacing the original coordinate byz+H.
of the crystal-melt interface. In this coordinate system, theFurthermore, we introduce the dimensionless parameters
steady-state planar solution is described by an exponential

solute profile — BsmGD -~ 1
(1-k)
C*(z)=C.{1+ K exp(—VzD)¢, (1)
— Tyl'Vv?
. - . ) ) = ., M=mG¢/G. )
in the liquid region B<z<«, where the interface is located mGcD?

at the pointz=0. HereC,, is the bulk concentration in the

quuid far fro_m the int_erface, the distribut_ion _coefficieh_t Here M is the morphological numbel, represents surface
gives the ratio of the interface concentration in the solid to

that in the liquid, and is the solute diffusivity in the liquid. c1er9Y. ands represents the magnitude of the attachment
Diffusion in the solid phase will be neglected, and for sim-k'net'cs' The diffusion equation fa>0 then becomes
plicity we shall assume that the temperature field is given by s
a linear functionT(z) with a constant temperature gradient ~ Ct=Cux (1 H)Cr= 2ZH,Copt (1+Hi = H,0) Cy,
dT/dz=G. ®

We shall study a kinetic model that is based on step mo- )
tion for a vicinal interface, and consider a two-dimensionalthe solute balance at thenapped interfacez=0

problem for a nonplanar interfa@e= H(x,t) and solute field )
C*(x,z,t) that satisfy (1+H)C,—HCx=(1+HY[1-(1-K)C], (9

C*,—VC*,=D(C*,,+C*,), (2)  and the kinetic law az=0
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1+H,; B(p+Hy| c+ Hy M-1H M increasing 3
- = p M - "
(1+HH? (1+HZ)3? 0
Hy
+ 1+? , (10

where for convenience we have dropped the bars. The far-

field condition forC is

lim C=1.

Z— >

B. Dispersion relation

11

-02

-04 .'.::°.

FIG. 1. Variation of the neutral stability curve under the effect

of kinetic anisotropyk=0.18, I'=10, p=0.1, and3=48-100.
The full line is the NSC in the isotropic case, the dotted curve
nearby is the one for small anisotropg+ 100) which appears to
be a smooth deformation of the former. For smaller valueg of

When investigating the linear stability of the basic state, We(larger anisotropythe NSC forms two folds which, at still smaller

) ) — — values, pinch off an isola, leaving a lower continuous branch pass-
introduce perturbation€’=C—C andH’=H—H into the

! . g ing through the origin. At some critical value gf finally, the isola
above equations. The linearized problem @Y (H') may be

| ) AT / vanishes, leaving the continuous branch al@mkich is not distin-
solved by separating variables to get nontrivial solutions  guishable from the one at the next higher valuggpf Note that for

uses of illustration only, parameters are chosen such that important
parts of the curve are found at negative valueMof' (and thus not
of physical relevance

These equations admit a basic staBeH) of the form

C=1-e% H=0. (12)

C'= ( ’yefrz-i- 7]672) eiaxeat, H' = 77eiaxecrt (13)
under the condition that the followindispersion relation

holds: The formation of multiple branches and isolas is most

easily understood when looking at the changes the neutral
stability curve undergoes with the variation of the parameters

a andk. In Fig. 1,k is kept constant while is varied(and
Here y and 7 are constantsa is the wave number of the W& thus follow a vertical line in Fig.)2 In the isotropic case,

perturbationg = o, + i w is the complex growth rate, and the i.e., a=0, Mullins and Sekerka predict that all modes are
exponent is given by linearly stable for large values o~ and a band of un-

stable modes exists for smaller values. For small enaugh
this picture is still valid, but the resulting neutral stability
curve is now a smooth deformation of the one obtained pre-

k+o ~ .
M- i=1+ —_r—Fa2+a(|a—pa). (14

1-k

(19

1
r= E(l+ \/1+4a7+4a).

Note that relation(14) is equivalent to that of Mullins and B
Sekerkd 17] augmented by a new term added that is propor-

. ~ 0.07
tional to a.

0.06

C. Discussion of the dispersion relation 0.05

The linear stability of the basic state with respect to the (4
perturbationg13) is determined by the sign af, =Re(0).
We focus on the neutral stability curv@dSCg, which are
expressed in the forrv =M ~1(a) defined implicitly by
the dispersion relation and the condition of zero growth rate,
i.e., 0,=0. Unlike the Mullins-Sekerka cases=Im(o) is
no longer zero, meaning that we expect critical modes to be
traveling waves. Furthermore, for fixex up to three solu-
tions [M"}(a),w(2)] are possible, depending upon the_ FIG. 2. Existence domain for isolas varying and 8 («
choices of the pqrameters. The consequences will k_)e dis- 1/8p?). Isolas contract to a single point at the upper line, and
cussed below; mainly we focus on three dominant effétXs: ey fuse to the lowefcontinuous branch at the lower line. At the
the nonconnectedness of the neutral stability cufitethe  point of intersection of the two lines the neutral stability curve has
contribution to the stabilization of the flat interface due t04 cusp. See Fig. 1 for the variation of the neutral stability curve in
anisotropy, andiii) the occurrence of a novel instability at the vertical direction of the diagram and Fig. 3 for the variation in
relatively large values ok. All three cases are accessible to the horizontal direction. The parameters Ere 0.1 andp=0.1. At

asymptotical analyses and these will be developed in subseeast for smalk, the upper line is well approximated by the Riley-
guent sections. Davis limit.

no isolas

0.03

0.02 rupture

Mullins & Sekerka
0.01

0.005 0.015 0.02 0.025 k
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FIG. 3. Neutral stability curves for small (I'=100, p=0.1,
B=10, andk=2Xx10"*—6x 10 %). The isolas, existing for some FIG. 4. Marginal stability diagram in thil ~1-T in the isotro-
range ofk, contract as the latter parameter increases. At some critipic case k=0.1). The plotted lines correspond to the local maxima
cal value the isolas contract to a single point and no longer exist fobf the neutral stability curve. The point of intersection with fhe
higher values. Beyond the point of extinction of the isola the planeaxis (at I'y=10) is the point of absolute stability.
front solution is dramatically stabilized. The stability is then domi-

nated by the continuous part of the NSC which passes through thg., e\er that the physically relevant part of the continuous
origin and which has a minimum at very small values\f - and branch of the neutral stability curve is not clearly visible in
a (see also Fig. 1 The solid curve shows the approximation of the . . -

" . . A : the latter figure(this will become clearer below, when we
neutral stability curve in the Riley-Davis limit. #/gives a measure di the absolute stability linit
of the anisotropy, =0 corresponding to the isotropic case of Isgtljsn?mir?gausotﬁeeosbzelr\llgti(l)rzls made above, we can say
Mullins and Sekerka. . .

that(i) one to three branches of the neutral stability curve are

viously, the modes being stabilized with respect to the isoPossible ii) they are not necessarily connected, &iid one
tropic case(at least for small enougk). Upon further in-  Of the branches always passes through the origin. We omit
crease ofw, three branches of the neutral stability curve discussion of the cases where the isolas only exist for non-

- - 71
become possible for certain wave numbers; more preciselPhysical(negative values OffM o . ¢ isol
the formation of two folds is observed. Beyond a critical N€cessary conditions for the observation of isola are

value ofa the neutral stability curve is composed of a con-Smallk and Iaggel“. As long asa is taken to be small, it is
tinuous part passing through the origiout which is physi- 1€ term—TI'a® that dominates the NSC for large If we
cally relevant only for small wave numberand of an isola takek to be even 3mal|_e(rand dispense with the condition of
which, in contrast to the isotropic case, contributes to instala’9€ I') the stabilization at large wave numbers can be
bility only in finite intervals of wave-numbers and inverse dominated by anisotropy. Or, expressed in physical terms,

morphological number# ~* (see also Fig. 3 for a case of anisotropy plays a role analogous to that of surface energy,
and its influence is strongly stabilizindf. can then even be

very smallk). Finally, for high enough values df, isolas no chosen to be very small if the anisotropy is strong enough.

longer exist; neutral stability is then given by a curve similar L : e
to the Mullins-Sekerka one, but generally on different scalesHowever’ itis not possible to replace the effect of capillarity

of wave numbers and morphological numbers. Similar thingiggp;?;ego?ﬁtzgliﬁgggpy; =0, large enough wave num-

are found whenw is kept constant ané is varied; Fig. 3 In both of the above descriptions we have seen, for small
corresponds to following a horizontal line in Fig. 2. Increas-ygjyes ofk, that the effect of anisotropy is stabilizing; differ-
ing k, again there is a transition from the continuous, con-ent results are found at larger values. In the isotropic case,
n_ected neutral stablllty curve to |sola_s, and fur_ther on thg e in the analysis of Mullins and Sekerka7], all modes
disappearance of the isolas and dominance of instability bye |inearly stable foF >k ! since there the neutral stability
the remaining continuous part of thg curve. These transitiong, e only exists for negativenonphysical values ofM
are summed up in the diagram of Fig. 2: Two lines define thesee Fig. 4. This is theabsolute stability limitwhich is the
existence domain of isolas. For lawthere is a line of “rup-  complete stabilization of the flat interface by the effect of
ture” where the isolas disconnect from the continuous neusurface energy. When this limit is approached, the critical
tral stability curve, and for large and smalk we find a line  value forM ~*, as well as the critical wave number at which
of “extinction” where the isolas retract to a single point and instability first occurs, tend to zero. Figure 5 shows this ap-
then vanish. At the point of intersection of the two lines, theproach in the presence of kinetic anisotropy. The neutral sta-
neutral stability curve has a cusp. bility curve now has two maxima: one, here occurring at
It is worthwhile noting that in some cases linear theoryhigh wave numbers, which is strongly influenced Ibyand
predicts a “stability window” meaning that the domain of which is directly related to the isotropic case, and another,
M 1 for which linear stability holds for all wave numbers is occurring at low wave numbers which is hardly affected by
not necessarily the semi-infinite interval as was in the isotrol” (see also Fig. 6 It is then easily seen that the latter be-
pic case, but can now be composed of a semi-infinite intervatomes dominant at some valuelofnear the absolute stabil-
and a finite interval (the “window”). This can be easily ity limit. This is shown in Fig. 7. The new instability persists
understood, when following vertical lines in Fig. 3. Note, even far beyond the absolute stability limit of the isotropic
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M—l , Mfl
3x107 ¢ e . 8x107 | stable
v
%
2x 107 t %O.
6x107 |
1x107 anisotropic
IXT07F
0.002 ) 0.006 0.008 a
-1x107 unstable 2x107 ¢ / L,
FIG. 5. Neutral stability curves near absolute stability of the

isotropic  case I=k™!). Parameters: k=0.1, T 9.98 9.99 ot T

:9'99’ 9'99.5’ anc_i 10.0p:0.01,_ and,8=_109. S_O"d lines are ) FIG. 7. Marginal stability diagram in th&1 ~1-T" plane forl’
NSC in the isotropic case, dots in the anisotropic case. In the isQ; o, — -1 (k=0.1, p=0.01, B=10°). Again, the plotted lines
= A4, .01, . ,

tropic case, the maximum of the NSC goes to zero and is taken %rrespond to the local maxima of the neutral stability curve. The

smaller and smaller wave numbers as the absolute stability curve i, .\ /a4 line is related to the isotropic casee Fig. 4 the horizon-
approached; wheR=k™1, it has a horizontal tangent at the origin. o

: . ) . . . tal line to the new instability. At the point of intersection of the two
In the anisotropic case there is an additional maximum which be

: . o . curves, two modes with different length scales are marginall
comes dominant for the instability for relatively large valued of stable g ginaly
Figure 6 shows more details of the curve. '

case as shown by Fig. 8. This figure also indicates that, in thit is unstable for some finitg interval.qf velocitie_s, ie., stgble
presence of kinetic anisotropy, the absolute stability limit nofor very low and for very high velocities. In an intermediate
longer existsat least not in terms of the coordinatelsand ~ fange, there are two intervals of velocities for which the
I). planar front is unstable: one for low velocities, reflecting the
For fixed temperature gradie@, the parameters/, T, classical Mullins-Sekerka instability, and one for high ve-
and B depend on the dimensional paramet&s and V, locities owing its presence entirely to the kinetic anisotropy.
which are more useful for comparison to experiments. Fig-The theory predicts a point, the point of intersection of the
ures 9 and 10 show the domains of stability in terms of themarginal stability curves, where the two phenomena are
latter parameters, limited by thmarginal stability curves competing.
which are determined by a condition of tangency for the In concluding this section, we emphasize the following
neutral stability curves. Roughly speaking, the marginal staebservations. As expected, a small kinetic anisotropy only
bility curves are composed of two branches. The first one igields moderate changes of linear stability, the most impor-
found for low V and can be related to the isotropic casetant effect being that the instability modes are traveling
(anisotropy slightly stabilizes at very loW) and it is also  waves of a preferred direction rather than stationary cellular
related to the isolas, if they exist. The high velocity branchpatterns. The changes can be dramatic if anisotropy is larger;
lies mainly above the upper part of the marginal stabilitybranches of the neutral stability curve can disappear, result-
curve of the isotropic case, and is thus beyond the absolufgg in a sudden stabilization of the flat interface. Different
stability limit. It is uniquely due to the presence of kinetic mechanisms of stabilization and destabilization can arise and
anisotropy. Considering lines of consta®t in Fig. 9, this  eventually become more important than those related to the
gives the following picture: foC., small enough, the planar isotropic case.
front is linearly stable for any velocity. For large enough

Mfl

M7t
3x107 3x107 stable

a1

2x10 2x107
1x107 |

1x107 unstable
0.0005 0.001 ) a
20 40 60 80 I

FIG. 6. Neutral stability curves computed from the full disper-  FIG. 8. Marginal stability curve in the presence of kinetic an-
sion relation(doty, computed in the BASL(closely fitted solid isotropy. In contrast to the isotropic case, there no longer seems to
line), and for the Brattkus-Davis limit in the isotropic ca@mown- be an absolute stability limit for the anisotropic model. The curve is
ward parabola the continuation of the one of Fig. (hote the different scalgs
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M. & S.

3 — 0.6
stable —
—
—
T 0.4
~ InC. increasing B
~ 0.2
- unstable

0.5 1 15 2 25 a

FIG. 9. Marginal stability curves for the paramet&sandC.,
(arbitrary unit3. The planar front is stable to the left of the curves ~ FIG. 11. Kinetic anisotropy stabilizes modes with high wave
and unstable to the right. The lower branch appears to be a smoofimbers in a way similar to surface energy. The effect is particu-
deformation of the curve computed in the isotropic césashed larly pronounced when the segregatibnis small. This makes an
line). The upper branch is due to a new instability and is strongly@Symptotic limit similar to the one by Sivashinsky possible. Shown

related to the effect of kinetic anisotropy. here are the neutral stability curves for various value@ dflots
and for the isotropic casesolid line). Parameters ark=10"*4, T
[ll. LONG-WAVELENGTH LIMITS =0.01,p=0.1, andg=300, 150, 100.

In this section we look more deeply into the effects of =0(s~%?). Consistent scalings foa and o are thena

kinetic anisotropy by considering asymptotic 'expansions: 0(£Y2) ando=0(z?). The dispersion relation up to lead-
characterized by large wavelengths. Various long-

- i i . . ing order then becomes
wavelength limits have been considered in the isotropic case,

an overview of which is presented in R¢L2]; most of the to

limits considered here are closely related to them. After ana- m— —Ta%+iaa=0 (16)
lyzing the dispersion relation, we shall derive nonlinear am- a

plitude equations which govern the evolution beyond linear , . .
instability. and we see that the linear stability of the problem is not

affected by the anisotropy at this order. The neutral stability
A. The Sivashinsky limit curve turns out to be
Linear theory.Sivashinsky[11] takes the segregation pa- K )

rameterk to be very small, meaning that the solute rejection u(@)=—+rla 17)
is almost complete. The NSC is then dominated bylla?, a
except for a small boundary layer in the wave numdésee
also Fig. 1). Therefore, we wish to define a length scale
whose asymptotic limit well approximates the neutral stabil- w(a)=aad. (18)
ity curve at its maximum. Sdt=¢%«, I'=0(1), andM !
=1—pue. There is some freedom for the choice of the scal- Evolution equationLet
ings of the parametersandB; here we take=0(e?) and

on which the Hopf frequency=iw varies as

0

. C:E+j§1 elc;, (19)

unstable

H=¢F (20)

and solve Eqs(8)—(10) at successive orders ef ThenC;
turns out to be

- C,=Fe? (21)
- i
T M&S . ‘ andC,

\\g InC.

— Co=—(uF+TFy+aF,)e % (22

stable

FIG. 10. Marginal stability curves for the paramet®randC,, At third order the diffusion equation is inhomogeneous and
(arbitrary unit3. The planar front is stable to the left of the curves we have
and unstable to the right. The curve for the isotropic case is given
for uses of comparisoridashed ling Again (as in Fig. 9, the Cy=ve *—6,ze %, (23
classical instability is related to the lower part of the curve. For the
parameters chosen for this plot the neutral stability curve has isolasvhere §; is determined by the inhomogeneities
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81= F it TF u— (FF) o+ aF (24) The first order yields
andy is determined by the kinetic law. The solute balance at Ci=F.e™" (32

this order imposes the solvability condition The following order is then solved to give

_51=Ft+KF (25) ~
C2=(F2—ale)e_Z. (33)
yielding the desired evolution equation
Next,
Fit kF + uF ot TF ot aF y— (FF)=0.  (26) - B
Cs=(F3—aFyx—uF1—TFyye ™ (34)

Equation(26) was obtained by Youngt al. [10] in the

framework of a simpler model for kinetic anisotropy, and aAt fourth order, where

two-dimensional bifurcation analysis shows that nontrivial

solutions bifurcate subcritically. The numerical simulation

reveals, as expected, the formation of tilted cells. But al-

though the shape of the cells seems to converge rapidly at the

tips, the roots steepen until breakdown, a problem already (Zy pa)F )
1x

known from the isotropic cas@see Ref[12]). o 2

Cy=|Fy4—aF g~ puF,—TF ot paFy,

-z_ |7 1 2 A
S alexx_E(Fl)xx ze

B. Evolution of anisotropy-stabilized modes(EVANST) (35

Linear theory.In this section we adopt essentially the there is a first condition arising from the solute balance
same scalings as Sivashingkil] or Younget al. [10], but

we now take anisotropy to be larggre., a=0(1)]. As we ~ _ } 2y _
shall see, this asymptotic limit indicates that anisotropy is Pt aFio 5 (F190=0. (36
nearly sufficient to stabilize long-wavelength modes, though ]
a very small contribution of capillarity is still requested to Then, at fifth order
stabilize short-wavelength modes. ~

We now prefer to write the scaling as followst *=1 Cs=(-)e = [ uF 1t I'F 1 (F1F2) xut @F axxx
Com kot T=0), a-0(1). a=0). and o ~FoF 2+ P 30F P SRz e 7 (37)

=0(&3). We look for the neutral stability curve and thus put
o=iw. When extracting equal powers of the dispersion re\ye do not need the coefficient ef 2, which could be de-

lation, we first get aD(e) termined by the kinetic law at this order. But the solute bal-
o~ ance again imposes an equation, which has to be solved to-
w(a)=ca (20 gether with Eq(36):

and then at the following order ~
Fatt aF o (FoF D)xx= —Far— kF1—= uF 10— TF 1000

2 ~ ~
u(a)= @ (4a) + 12+[‘a2 (28 +aF o~ a(F)y. (38)
a a
Below, we develop both a weakly nonlinear analysis, reveal-
K _ ing the bifurcation structure near the onset of the linear in-
=—+([+a?)a’ (29 stability, and a strongly nonlinear analysis, making predic-
a tions on the emerging interface shapes.

Compared to the corresponding result of the preceding sec- Biurcation analysisFor the computation of the Landau
P P 9 P 9 équation of the critical modes, we combine E(36) and

tion, Eq.(17), we see that the tertfi+a? plays the role of (38) by writing u=F,+ €F,. Then, with a new small param-
an effective surface energy in the long-wavelength approXigier s~ ¢ = 82 we get the equation

mation (see Fig. 1L However, when shorter waves are al-
lowed,I" cannot be set to zero. _ 1
Evolution equationThe derivation of the evolution equa- Ui+ aUyyy— E(uz)XX
tion requires the consideration of relatively high powers of
Introduce a slow time scale by letting— ¢33, and expand + 82 U+ T Uyt Ll alp+ a(U2),1 = O(8%).
the fields as follows: X000 o TR X

(39
C=C+ >, £Cy, (30) Introduce the multiple time scaleg=d, + 6%, + 5*d,,
k=1 +.ov, p=pct u,t+---, and expandu= v+ v,

o + 8%+ - - -. From linear theory, the values of the critical

H= 2 £ F, (3 Wwave number, the critical frequency and the critical control

k=1 ' parameter are known,
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F(x)
i\ ey w AV )
'Zk \/5/ \ﬂf\/bf/ 20‘?% 30 \x
-4
FIG. 12. Two solutions of Eq48). Small-amplitude solutions

uc=2ﬁ‘/F + 2 (42) are sinuso!dal whereas strongly preferred orientations develop for
large amplitudes. The latter resemble facets.

The critical modes are traveling waves with phase speeds
was elaborated by Bar and Nepomnyash¢hg]. It turns

we ~ K out, however, that the great number of parameters in our

c= =\ =2 (43 problem makes conclusive statements rather difficult, and we

¢ I'+ta shall therefore not investigate the question of selection of
amplitudes and velocities of the emerging patterns.

Let us focus on EQq(36). When looking for traveling-
wave solutions of the form

wc=oaal, (41

We expand Eq(39) and solve order-by-order i The first-
order equation is the linear problem with the solution

=Aeac*tiectot ¢ c, 44
o1 44 F1(t,X) = u(ct+Xx), (47)
At second order, the problem may be solved explicitly, the

amplitudes turning out to be products Anand A. At third and after integrating once, is found to be governed by
order there is a solvability condition

cu+tau’=uu’, (48)
P4
A= '_~ K~ A|A2. (45) or formulated as a first-order ODE:
2 3a VI+a?
. . . : a'=p, (49
The coefficient of the cubic term is imaginary, so that this

equation does not give any information concerning the , o~

N ey ; p'=a lq(p-c). (50

modulus ofA, but it gives an amplitude-dependent correction
to w¢ (or to the velocityc). The fourth-order equation may
again be solved explicitly, and finally at fifth order there is
another solvability condition which is the Landau equation 1
that we have been seeking. After rescaling of the ttmé K=-—=0g?-p—cln|p—c|. (51)
can be written as 2

A first integral for this system is easily found in the form

) Solutions of Eq(48) are then given as contours of constant
AJA[?+ibAJA]%, (46) K. For small amplitudes, they are nearly sinusoidal, suggest-
ing a cell-shaped interface shape, as predicted by the bifur-
cation analysis. For larger amplitudes, these cells become
more and more tilted and finally, as the amplitude gets very
large, they are more and more facetlilsee Fig. 12 The
(39). The coefficient of the cubic term is real and can changd'©Nt iS then composed of nearly linear piecgs-(c) con-
o ~ . nected by sharp variatiorfeshere bothg andp vary rapidly.

't.s sign. If als large .e.nough W'th respect 1, then th? This reflects the conflict of the interface trying to align with
bifurcation IS supercritical, meaning that small travellng-the crystal lattice while still remaining close to its equilib-
wave solutions are expected to be observed beyond ﬂ}"ﬁjm position.
threshold of linear instability. If is small we recover the
subcritical bifurcation of Sivashinskisee previous sectign
Roughly speaking, we could say that in this particular limit
the effect of anisotropy is to promote a smooth transition Linear theory.In the isotropic case, the critical wave
from the flat interface to a corrugated one. number and the critical value dfl ! both tend to zero as
Strongly nonlinear analysisThe bifurcation analysis of I'—k™*, and finally all modes are linearly stable whén
the previous section predicts the amplitude of sinusoidaFk™* (see Fig. 5. This limit, the absolute stability limit,
front shapes close to the threshold of linear instability. Italready mentioned in the general discussion of the dispersion
does not give any indications concerning the shape of theelation above, was used by Brattkus and D&#3] for the
interface when nonlinear effects become more importantderivation of a strongly nonlinear long-wavelength evolution
The strongly nonlinear analysis of this section has somequation by settingg=k *-T, M~ 1=0(e?), k=0(1),
similarities with the work of Merchangt al. [18] for a flat andI’=0(1). Wave number and growth rate are then to be
pulsating solidification front in the context of rapid solidifi- taken asa=0(e¥?) ando=0(¢). If we now try to take into
cation. It appears to be even closer to the recent investigaccount the effect of anisotropy, two scalings seem to pos-
tions of Golovin and Davi§16] on a model of anisotropy for sible for p and B. Either we takep=0(s¥?) and g
solidification into a hypercooled melt; its mathematical basis= O(e~>?) or p=0(1) andB=0(e~*?), both yielding

) 1
A= (o tip)A=3 3—§

whereb and u; are real constants, again contributing to a
correction ofwc. Note thatu; appears as the only conse-
quence of the high-order terms summarized4s*) in Eq.

C. The Brattkus-Davis limit
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1 5 Evolution equationWe allow amplitudes of unit order for
M~ t=a2- —[k(o+ a?)+a’](a®+o)+iaca. (52 H and expand the deviations from the basic s{a® in an
k asymptotic series:

A problem arises when looking at the neutral stability curve <
in this limit. Seto=iw and separate the above equation into H= Z g'Fy, (57
real and imaginary parts =0

1+k 2 -C ic.
M-1=a2_ 2t 2 (53) C_C+j§=:1 glCy, (58

and introduce two time scales by settif\g- e d,+ £%d1. At
first order, the diffusion equation together with the solute
- balance yields

and

w

=Trok® - (54 Ci=Fge? (59)

hat thi ling is i L~ h with which the equation for the interface dynamics is satis-
We see that this scaling is inappropriatepasa~, and thus e jgentically. At second order we may determine coeffi-

even for smalla there is always a band of unstable long- gients v« depending orfF, such that
wavelength modes. There is no simple way to circumvent

this problem, but much is explained by the scaling developed 2 .
in the next section. szgo nze * (60)
D. Beyond the absolute stability limit (BASL) satisfies the diffusion equation and the solute balance at this
order

Linear theory.The presence of anisotropy gives rise to a
new long-wavelength limit unrelated to any limit of the iso- 1
tropic case, stemming from the additional maximum of the Yo=— = (Foxxt+ Fott), (61)
neutral stability curve mentioned earlier in the discussion of k
the dispersion relation. Let us scale as follows: !

- 2

=0(e?), p=0(¢e), B=0(e~ %, a=0(¢), and w=0(¢). Y1=FortFit—Foxx—Fou—Fox. (62)

We determine the neutral stability curve by puttiogri . 1

2
At order ¢ we get yp=— E(FOtZJr Fouw- (63)
1 1 2, @
M7 =(k " —T)a’+ 1. (59 Interfacial kinetics now imposes the condition

(p+Fo){FouTkM™'Fg}=0 (64)

w is determined at the following order by solving

and for consistency we require the second expression to van-

ak? ish, which is achieved by setting

3.2, _ _
w’+a‘w 1+2ka 0. (56)

Fo(t, T,X)=A(T,x)e'“o'+ A(T,x)e o, (65)
The resulting curvas=w(a) then grows as'” at the ori-
gin, and after having reached a maximum decaymas @o=VKM™". In a similar way as at the previous orders we
The neutral stability curve in terms of ~* therefore has a Solve the diffusion equation and the solute balance at third
vertical tangent at the origin, which is rather unusual. This isorder by the ansatz
corrected by terms of the following order which introduce a 3
singular perturbation near the origin. A more important ob- Coaz Z Suzke—2 66)
servation is that we need to haVe=k ™! in order to make 3T K
this limit work (although we may get an accurate description
of the neutral stability curve near the origin whErck™1).  and after determination of the coefficients, the kinetic bound-
In terms of the isotropic case we are here working beyondry condition becomes
the absolute stability limitll =k~ 1). Figure 6 shows a com-
parison of the approximated and the full neutral stability
curves. Note that the most important contribution to the neu-
tral stability curve is now given by the frequency tew(a).
Numerical as well as asymptotic results seem to indicatavhere we have divided by#4F,/p. £ and N are given by
that, in terms of’ andM, there is no absolute stability limit 142k
anymore(see Fig. 8 In terms ofV andC,,, the instability is _ 1
related to the uppethigh velocity branches of the marginal LF=2F7+(1+2lMF, k Fooct kP,
curves of Figs. 9 and 10. (68)

Fi _

-1 _~—
Fltt+kM F1+EFO+N'(FO) a1+le/p

0, (67)
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RGO on which the Hopf frequency is given by the following:

w(a)=aa*{a?a?+ (M 1+a?? 1. (74)

Obviously the two branches do not exist for all valuesapof
suggesting that they approximate the isolas described above
(see Fig. 3, for examp)eThe curves only exist for values of

k and « for which

k?.‘uz<i (75)
16°

On the other hand, we recover the form of the neutral stabil-

01 02 03 0.4 X ity curve of the unperturbed case by simply puttiag-0,
FIG. 13. Plot of the functiorR(x) for p=1. though this perturbation is singular.
Evolution equationln this limit we are no longer allowed
MF)=FF+3kM FF,— 2F,F,. (69)  to work on the basis of the known soluti@ which imme-

diately complicates the involved terms. Our ansatz for the
For evident reasons there is a solvability condition of thesolution is now

form

H=F, (76)
1+2k 5 1+2k o~ )
2woAT+ TwOA— TwoAxx+ ikaAR(|A)=0, C=Cyt+e“Cqy+--- (77)
(70) giving the following solution forC, at leading order:
whereR is given by the integral Co=1-Ae? (79
1 (27 coSt with A being defined as
R(x)= ;fo p+2x costdt' (71)

A=1-M F+F +a (79

X
Bifurcation analysisA plot of the functionR in Eq. (71) 1+F,/p’
is shown in Fig. 13. A power series developed aboutO o ) i o
shows that there is no linear term jnand the sign of the The diffusion equation at first order is inhomogeneous, and
quadratic term is positive. This is sufficient to tell us that theitS Solution may be written as
underlying bifurcation problem for the critical modes gives Ci=ye ?+ 8,26 (80)

only subcritical bifurcations.

Absent from this analysis are other nonlinearities, as apy could be determined by the equation for the interface ki-
using different scalings oH and C. It turns out that the py the diffusion equations to be

coefficients of the these nonlinear terms are such that they do

not significantly influence the bifurcation behavige., the Sy=A+FA—A,—2F A —F, A—F2A. (81)
corresponding contribution to the Landau coefficient remains
imaginary. It is the solute balance which imposes the solvability condi-

tion, which turns out to be

E. The Riley-Davis limit A=A, —FA—F A—k(1-A)=0 (82)

Linear theory A further case which we would like to take
into consideration is the scaling used by Riley and Davisor, in its expanded form,
[12]: e=T "2 M=0(1), k=0(&?), a=0(¢), and o L
= 2 - — -1 ;

O(&“). We choosgp=0(e) and8=0(e ™ ), leading to Fi— MF o+ MF ot (M— 1—KM)F,, + kF— E(Fz)xx

k+o

M l=1- ——— —a%+iaa. (72 M -
k+0‘+a2 +7(Fx)xx:aM[Bt_Bxx+kB_(FxB)x] (83)
Splitting this equation into real and imaginary parts allows USith
to get the neutral stability curve
B (84)
M~Ya)=———{(1-2(k+a?))a? C1+F,/p’
(@)= (12 )

Bifurcation analysisNear the onset of instability, we de-
+\Jat— 4a?a(k+ a®)? (73)  rive a Landau equation for the amplitude of the single
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to the formation of isolas in some ranges of the parameter
space(ii) the importanstabilizationof the plane front in the
case ofsmall segregation coefficients &nd(iii ) destabiliza-
tion by the presence of a novel mode, typically related to
high velocities Vandlow wave numbers

In the wake of former asymptotic analyses of the isotropic
model (Refs.[11-13) we find asymptotic expansions of the
dispersion relation which give some insight to the three ob-
servations stated above. Working with the scalings estab-
lished for the linear theory, we then derived equations for the
evolution beyond the threshold of instability.

As far as linear stability is concerned, only in the case of
the Riley-Davis limit(see Ref[12]) does the straightforward
inclusion of the anisotropy terms within the asymptotic
analysis of the isotropic case lead to interesting results; it
gives a good description of the isolas and their extinction.
The nonlinear evolution equation we find in this case turns
out to be very complicated and we therefore restricted our
. . ‘ : : ‘ attention to the investigation of the type of bifurcation. Both

0 02 0.4 0.6 08 1/B subcritical and supercritical bifurcations are found, and in

contrast to the isotropic case, supercritical bifurcation is also

FIG. 14. Bifurcation structure in the Riley-Davis limit for the possible for small values df
parameter& and 13, with p=0.1. The bifurcation is supercritical The Sivashinsky limit(see Ref[11]) only predicts that
in the black zone and subcritical in the white zone. There is ndthe most unstable modes are traveling waves instead of sta-
neutral stability curve for this limit in the gray zone, and our analy'tionary cells, but leaves the neutral stability curve unaf-
sis does not apply. Note that we recover the transition from subfacted. While this limit is modified in a way that emphasizes
crit_ical to supercritical bifurcations of the isotropic cased%/0) the fact that the critical modes are traveling waves, one sees
which takes place at=1/9. that anisotropy strongly to stabilizes the planar front for

smallk. The eigenfunctions of the linear problem as well as
comparison to the parent problem of directional solidification
in presence of a shear floy8] indicate that the physical
explanation of this effect is a phase shift between interface
deformations and the concentration profile. A first nonlinear
evolution equation for this limit turned out to be the same as
investigated by Youngt al. [10] for a similar, but simpler
model. The results they had obtained were that tilted cells
Phifurcate subcritically from the planar solution. In our modi-
(b>0) or supercritical §<<0) bifurcations. Results of the fied version of this '.".““(‘-e:' when anisot_ropy i_s taken to be
computations are displayed in Fig. 14. First, note thast strongey, the fsgbcr[tlcal blfurcatllon of $|vash|nsky can be-
mentioned abovethe neutral stability curve d;)es not exist “OM¢ supercr|t|cal_,'|.e., that the |nterfac':|a.1l'pat.tern can appear
~p 1 ] in a smooth transition from the flat solidification front. Fur-
for ka®> 1. On the other hand the figure shows that, aspermore, a strongly nonlinear analysis predicts that the in-
expected, the results of the isotropic case are recovered Whektace forms a periodic “facetlike” structure for larger am-

a—0, i.e., that the bifurcation is supercritical far>% and plitudes.
subcritical otherwise. The most important change of the bi- The Brattkus-Davis limit(see Ref.[13]) breaks down
furcation structure is that supercritical bifurcations now oc-when the anisotropy terms are added naively, due to the pres-

04 r

031

021

0.1 r

mode e'cXel“ct, The evolution of the amplitude, which is
supposed to vary on a slow time-scaleis governed by the
Landau equation

A,=NA+DbAAJZ. (85)

\ measures the departure from equilibrium, whetehas to
be computed; the general formulas are displayed in the A
pendix. Depending upon the sign bfthere are subcritical

cur also for smalk, if « is large enough. ence of a novel instability which occurs on a different scale.
The limit is applicable near the absolute stability limit of the
IV. CONCLUSION isotropic case, i.e., near the complete stabilization of the pla-

nar interface by surface energy, but it cannot take into ac-
Our investigations are based on a version of a classicalount the new instability which is almost unaffected by the
one-sided model of directional solidification of a dilute alloy presence of surface energy. We show how to establish a limit
[17] including effects of kinetic anisotropy. In contrast to the describing the new instability which is now purely due to the
physics of the underlying model, which is dominated by dif-kinetic anisotropy(although capillarity can be included in
fusion, mass conservation and surface energy, the matlthe description Thus, it seems that the tendency of the in-
ematical formulation of the kinetic law relies upon consider-terface to align with the crystal direction by the effect of
ations of the microscopic process of atoms or moleculesttachment kinetics is now stronger than any influence of the
attaching to step sites of a vicinal surface. Linear theorycapillarity. It seems to be plausible that, at the high rates of
reveals three principal features associated with the new ebolidification where the phenomenon occurs, the energy re-
fects which connects the parts of this pag@rThe possibil- lated to the attachment of the atoms dominates over surface
ity of multiple branche®f the neutral stability curve, leading energy. We do not give a detailed analysis of the evolution
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equation that we derive in connection with this novel insta- 2Ku
bility, and which could be called “strongly anisotropic.” Ng= — —a(Z;, (A3)
However, a bifurcation analysis indicates that periodic solu- p

tions appear subcritically beyond the point of linear instabil- ~
ity, and thus that we do not expect them to appear smoothly , _ —222(M=1l+ a2 +ﬁ 21+ 482 + 2i 4
at the threshold of linear instability. N2 ac(Mc +ag) p aclkt4ac+2i(wctpac)],

(A4)
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APPENDIX: THE LANDAU COEFFICIENT Sce=—-adlk+ag+i(wctpac)l, (AT)
IN THE RILEY-DAVIS LIMIT P

Defining R=a2+Mg'—iaac, (A8)

lo=—kMct, (Al)  the Landau coefficient in Eq85) is given by

1= (2i we+4a%+K)(—4ai—Mgl+2izac) +4a2, b= — [ SeemSmm2 - 5,9 (A9)

(A2) R P lo
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