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Steps, kinetic anisotropy, and long-wavelength instabilities in directional solidification
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We consider the effect of anisotropic interface kinetics on long-wavelength instabilities during the direc-
tional solidification of a binary alloy having a vicinal interface. Linear theory predicts that a planar solidifica-
tion front is stabilized under the effect of anisotropy as long as the segregation coefficient is small enough,
whereas a novel instability appears at high rates of solidification. Furthermore, the neutral stability curve,
indicating the values of the principal control parameter~here the morphological number! for which the growth
rate of a sinusoidal perturbation of a given wavelength changes its sign, is shown to have up to three branches,
two of them combining to form an isola for certain values of the control parameters. We identify conditions for
which linear stability theory predicts the instability of the planar interface to long-wavelength traveling waves.
A number of distinguished limits provide evolution equations that describe the resulting dynamical behavior of
the crystal-melt interface and generalize previous work by Sivashinsky, Brattkus, and Davis and Riley and
Davis. Bifurcation analysis and numerical computations for the derived evolution equations show that the
anisotropy is able to promote the tendency to supercritical bifurcation, and also leads to the development of
strongly preferred interface orientations for finite-amplitude deformations.@S1063-651X~99!02605-7#

PACS number~s!: 64.70.Dv, 81.30.Fb, 47.20.Ky
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I. INTRODUCTION

During crystal growth from a fluid phase with a vicin
interface, the interface velocity is generally we
approximated as a linear function of the local undercool
at the interface. For a vicinal surface, the constant of prop
tionality ~the interface-attachment coefficient! is a strongly
anisotropic function of the interface orientation. The char
teristic effects of interface attachment kinetics contrast w
the assumption of local thermodynamic equilibrium; they
manifested in a number of materials processing applicatio
including vapor growth@1#, solution growth@2#, and melt
growth @3#.

For a vicinal surface, the microscopic picture of a cryst
fluid interface consists of a series of atomically flat terra
that are interrupted by steps of roughly atomic dimensions
the steps are well separated from each other, the mean
entation of the interface then differs only slightly from th
singular orientation of the terraces, and the motion of
interface in its normal direction proceeds by layer grow
that occurs at the step locations. Therefore, the limiting f
tors for the growth are the attachment rate at the steps
the step density. This view implies that an interface witho
steps, which consists entirely of the singular orientation
stationary, resulting in the strong orientation depende
~anisotropy! of the interface-attachment coefficient for vic
nal interfaces. In practice, for large enough undercooli
steps on a singular interface can arise via two-dimensio
nucleation of a new layer in the interior of a terrace, and
defects in the surface, such as screw dislocations that a
step sources. Once steps are present on a singular surfac
mean orientation differs from the singular orientation, a
motion of the interface in its normal direction can occur a
finite rate as material is added at the steps. In this paper
PRE 591063-651X/99/59~5!/5629~12!/$15.00
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investigate the implications of an anisotropic kinetic la
given by an attachment coefficient that is directly prop
tional to the local slope of the interface, measured relative
the singular orientation.

The effect of attachment kinetics on the morphologic
stability of a growing crystal has received considerable
tention~see, e.g., Ref.@4#!. For the growth of a pure materia
into a hypercooled melt, finite attachment kinetics can le
to constant velocity growth; a number of linear and nonline
analyses of the hypercooled growth with kinetics have b
performed@5–7#, although the number of experimental stu
ies in this regime is limited@8#. For directional solidification
of a binary alloy into a positive temperature gradient, t
effect of an isotropic kinetic coefficient is merely to modi
the interface temperature; an exchange of linearized sta
ties generally holds, and the conditions at the onset of in
bility are unaffected by kinetic coefficient. The effect of
mild anisotropy is to generate traveling wave instabilities
the onset@9#. The conditions at the onset are again u
changed if the anisotropy is mild enough in which case
quasistatic treatment of the diffusion field is a good appro
mation, and a weakly nonlinear treatment of the probl
@10# predicts the formation of tilted cells in two dimension
If the kinetic anisotropy is strong enough, however, a qua
static analysis becomes inadequate, and the onset of inst
ity can be significantly modified. In this case, the effect
the traveling-wave instability is to produce a phase diff
ence between the perturbed interface and the solute fiel
which lateral solute transport can significantly stabilize t
interface@2#. This kinetic stabilization has also been studi
in conjunction with shear flows parallel to the interfac
which tend to interact strongly with the lateral step moti
@3#.

In various problems of crystal growth cited above, p
5629 ©1999 The American Physical Society
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terns of long wavelength tend to be favored, suggesting
the morphological stability theory may be extended to
clude nonlinear effects by taking advantage of the dispa
length scales in the directions tangential and normal to
growth direction. Long-wave theories of this general ty
have been developed for directional solidification stud
without kinetics by a number of authors@4#; examples in-
clude the work of Sivashinsky@11#, Riley and Davis@12#,
and Brattkus and Davis@13#. A long-wavelength theory tha
generalizes the work of Sivashinsky by incorporating the
fects of weak kinetic anisotropy has been considered
Young, Davis, and Brattkus; Novick-Cohen@14# generalized
the treatment of Sivashinsky to include the effects of n
equilibrium thermodynamics and derived a form of t
Kuramoto-Sivashinsky equation for long wave instabilitie
Hoyle, McFadden, and Davis@15# investigated the effects o
surface-tension anisotropy on pattern selection during the
lidification of a binary alloy, and Golovin and Davis@16#
considered the effect of anisotropic surface tension on
hypercooled growth of a pure material.

In the following section we formulate the governing equ
tions of the model, in particular the anisotropic kinetic la
and discuss the linear theory that describes the morpho
cal stability of the planar state. In Sec. III we consider lon
wavelength limits of the governing equations in a variety
limits: First, when including only small effects of anisotrop
we recover the results of Younget al., and then show how a
similar scaling may be used to take into account larger
fects. We explain why there is no simple extension of
work of Brattkus and Davis and develop a long-wave eq
tion for a somewhat similar scaling which we show to
valid far beyond the limits of the isotropic case. Finally, w
use the scalings of Riley and Davis to investigate kine
anisotropy. Conclusions are presented in Sec. IV.

II. GOVERNING EQUATIONS AND LINEAR THEORY

We consider the one-sided directional solidification o
binary alloy in a reference frame moving with the velocityV
of the crystal-melt interface. In this coordinate system,
steady-state planar solution is described by an expone
solute profile

C* ~z!5C`H 11
~12k!

k
exp~2Vz/D !J , ~1!

in the liquid region 0,z,`, where the interface is locate
at the pointz50. HereC` is the bulk concentration in the
liquid far from the interface, the distribution coefficientk
gives the ratio of the interface concentration in the solid
that in the liquid, andD is the solute diffusivity in the liquid.
Diffusion in the solid phase will be neglected, and for sim
plicity we shall assume that the temperature field is given
a linear functionT(z) with a constant temperature gradie
dT/dz5G.

We shall study a kinetic model that is based on step m
tion for a vicinal interface, and consider a two-dimension
problem for a nonplanar interfacez5H(x,t) and solute field
C* (x,z,t) that satisfy

C* t2VC* z5D~C* xx1C* zz!, ~2!
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in the liquid regionH(x,t),z,`. The effects of lateral con-
finement of the system will be neglected, and solutions t
are periodic inx will be assumed. We also impose the fa
field boundary conditionC*→C` as z→`. At the crystal-
melt interfacez5H(x,t) we have conservation of solute

2D~C* z2HxC* x!5@V1Ht#~12k!C, ~3!

and the modified Gibbs-Thomson equation

~V1Ht!

A11Hx
2

5b~Hx!$TM1mC* 2TMGK2T~H !%. ~4!

Here TM is the melting point of the pure material,m is the
liquidus slope,G is the capillary constant,K is the interface
curvature, andb is the anisotropic interface-attachment c
efficient. We shall assume that this kinetic coefficient has
form @2#

b~Hx!5bst~ p̄1Hx!, ~5!

where p̄ represents the orientation of the planar interfacz
50 with respect to the singular orientation andbst is a con-
stant. The velocity and temperature of the planar interf
are therefore related by

V5bstp̄H TM1m
C`

k
2T~0!J . ~6!

A. The rescaled equations

In order to get dimensionless variables, we rescale leng
with D/V, time with D/V2, and replace the physical conce
tration C* (x,z,t) by (D GC /V)C„x,z2H(x,t),t…1C` /k,
whereGC5(V/D)C`(k21)/k is the concentration gradien
at the planar interface. Note that we mapped the interfac
the plane by replacing the originalz coordinate byz1H.
Furthermore, we introduce the dimensionless parameters

b̄5
bstmGCD

V2
, ã5

1

p2b̄
,

Ḡ5
TMGV2

mGCD2
, M5mGC /G. ~7!

Here M is the morphological number,Ḡ represents surface
energy, andb̄ represents the magnitude of the attachm
kinetics. The diffusion equation forz.0 then becomes

Ct5Cxx1~11Hx
2!Czz22HxCxz1~11Ht2Hxx!Cz ,

~8!

the solute balance at the~mapped! interfacez50

~11Hx
2!Cz2HxCx5~11Ht!@12~12k!C#, ~9!

and the kinetic law atz50
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11Ht

~11Hx
2!1/2

5b~p1Hx!S C1
GHxx

~11Hx
2!3/2

2M 21H D
1S 11

Hx

p D , ~10!

where for convenience we have dropped the bars. The
field condition forC is

lim
z→`

C51. ~11!

B. Dispersion relation

These equations admit a basic state (C̄,H̄) of the form

C̄512e2z, H̄50. ~12!

When investigating the linear stability of the basic state,
introduce perturbationsC85C2C̄ and H85H2H̄ into the
above equations. The linearized problem in (C8,H8) may be
solved by separating variables to get nontrivial solutions

C85~ge2rz1he2z!eiaxest, H85heiaxest ~13!

under the condition that the followingdispersion relation
holds:

M 21511
k1s

12k2r
2Ga21ã~ ia2ps!. ~14!

Here g and h are constants,a is the wave number of the
perturbation,s5s r1 iv is the complex growth rate, and th
exponentr is given by

r 5
1

2
~11A114a214s!. ~15!

Note that relation~14! is equivalent to that of Mullins and
Sekerka@17# augmented by a new term added that is prop
tional to ã.

C. Discussion of the dispersion relation

The linear stability of the basic state with respect to
perturbations~13! is determined by the sign ofs r5Re(s).
We focus on the neutral stability curves~NSCs!, which are
expressed in the formM 215M 21(a) defined implicitly by
the dispersion relation and the condition of zero growth ra
i.e., s r50. Unlike the Mullins-Sekerka case,v5Im(s) is
no longer zero, meaning that we expect critical modes to
traveling waves. Furthermore, for fixeda, up to three solu-
tions @M 21(a),v(a)# are possible, depending upon th
choices of the parameters. The consequences will be
cussed below; mainly we focus on three dominant effects~i!
the nonconnectedness of the neutral stability curve,~ii ! the
contribution to the stabilization of the flat interface due
anisotropy, and~iii ! the occurrence of a novel instability a
relatively large values ofk. All three cases are accessible
asymptotical analyses and these will be developed in su
quent sections.
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The formation of multiple branches and isolas is mo
easily understood when looking at the changes the neu
stability curve undergoes with the variation of the paramet
ã andk. In Fig. 1,k is kept constant whileã is varied~and
we thus follow a vertical line in Fig. 2!. In the isotropic case
i.e., ã50, Mullins and Sekerka predict that all modes a
linearly stable for large values ofM 21 and a band of un-
stable modes exists for smaller values. For small enoughã,
this picture is still valid, but the resulting neutral stabili
curve is now a smooth deformation of the one obtained p

FIG. 1. Variation of the neutral stability curve under the effe
of kinetic anisotropy.k50.18, G510, p50.1, andb548→100.
The full line is the NSC in the isotropic case, the dotted cur
nearby is the one for small anisotropy (b5100) which appears to
be a smooth deformation of the former. For smaller values ob
~larger anisotropy! the NSC forms two folds which, at still smalle
values, pinch off an isola, leaving a lower continuous branch pa
ing through the origin. At some critical value ofb, finally, the isola
vanishes, leaving the continuous branch alone~which is not distin-
guishable from the one at the next higher value ofb). Note that for
uses of illustration only, parameters are chosen such that impo
parts of the curve are found at negative values ofM 21 ~and thus not
of physical relevance!.

FIG. 2. Existence domain for isolas varyingk and b (ã
51/bp2). Isolas contract to a single point at the upper line, a
they fuse to the lower~continuous! branch at the lower line. At the
point of intersection of the two lines the neutral stability curve h
a cusp. See Fig. 1 for the variation of the neutral stability curve
the vertical direction of the diagram and Fig. 3 for the variation
the horizontal direction. The parameters areG50.1 andp50.1. At
least for smallk, the upper line is well approximated by the Riley
Davis limit.
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viously, the modes being stabilized with respect to the i
tropic case~at least for small enoughk!. Upon further in-
crease ofã, three branches of the neutral stability cur
become possible for certain wave numbers; more precis
the formation of two folds is observed. Beyond a critic
value of ã the neutral stability curve is composed of a co
tinuous part passing through the origin~but which is physi-
cally relevant only for small wave numbers! and of an isola
which, in contrast to the isotropic case, contributes to ins
bility only in finite intervals of wave-numbers and invers
morphological numbersM 21 ~see also Fig. 3 for a case o
very smallk!. Finally, for high enough values ofã, isolas no
longer exist; neutral stability is then given by a curve simi
to the Mullins-Sekerka one, but generally on different sca
of wave numbers and morphological numbers. Similar thin
are found whenã is kept constant andk is varied; Fig. 3
corresponds to following a horizontal line in Fig. 2. Increa
ing k, again there is a transition from the continuous, co
nected neutral stability curve to isolas, and further on
disappearance of the isolas and dominance of instability
the remaining continuous part of the curve. These transiti
are summed up in the diagram of Fig. 2: Two lines define
existence domain of isolas. For lowã there is a line of ‘‘rup-
ture’’ where the isolas disconnect from the continuous n
tral stability curve, and for largeã and smallk we find a line
of ‘‘extinction’’ where the isolas retract to a single point an
then vanish. At the point of intersection of the two lines, t
neutral stability curve has a cusp.

It is worthwhile noting that in some cases linear theo
predicts a ‘‘stability window’’ meaning that the domain o
M 21 for which linear stability holds for all wave numbers
not necessarily the semi-infinite interval as was in the iso
pic case, but can now be composed of a semi-infinite inte
and a finite interval ~the ‘‘window’’ !. This can be easily
understood, when following vertical lines in Fig. 3. Not

FIG. 3. Neutral stability curves for smallk (G5100, p50.1,
b510, andk5231024→631024). The isolas, existing for some
range ofk, contract as the latter parameter increases. At some c
cal value the isolas contract to a single point and no longer exis
higher values. Beyond the point of extinction of the isola the pla
front solution is dramatically stabilized. The stability is then dom
nated by the continuous part of the NSC which passes through
origin and which has a minimum at very small values ofM 21 and
a ~see also Fig. 1!. The solid curve shows the approximation of th
neutral stability curve in the Riley-Davis limit. 1/b gives a measure
of the anisotropy, 1/b50 corresponding to the isotropic case
Mullins and Sekerka.
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however, that the physically relevant part of the continuo
branch of the neutral stability curve is not clearly visible
the latter figure~this will become clearer below, when w
discuss the absolute stability limit!.

Summing up the observations made above, we can
that~i! one to three branches of the neutral stability curve
possible,~ii ! they are not necessarily connected, and~iii ! one
of the branches always passes through the origin. We o
discussion of the cases where the isolas only exist for n
physical~negative! values ofM 21.

Necessary conditions for the observation of isola
small k and largeG. As long asã is taken to be small, it is
the term2Ga2 that dominates the NSC for largea. If we
takek to be even smaller~and dispense with the condition o
large G) the stabilization at large wave numbers can
dominated by anisotropy. Or, expressed in physical ter
anisotropy plays a role analogous to that of surface ene
and its influence is strongly stabilizing.G can then even be
chosen to be very small if the anisotropy is strong enou
However, it is not possible to replace the effect of capillar
completely by anisotropy; ifG50, large enough wave num
bers are not stabilized.

In both of the above descriptions we have seen, for sm
values ofk, that the effect of anisotropy is stabilizing; differ
ent results are found at larger values. In the isotropic ca
i.e., in the analysis of Mullins and Sekerka@17#, all modes
are linearly stable forG.k21 since there the neutral stabilit
curve only exists for negative~nonphysical! values ofM 21

~see Fig. 4!. This is theabsolute stability limit, which is the
complete stabilization of the flat interface by the effect
surface energy. When this limit is approached, the criti
value forM 21, as well as the critical wave number at whic
instability first occurs, tend to zero. Figure 5 shows this a
proach in the presence of kinetic anisotropy. The neutral
bility curve now has two maxima: one, here occurring
high wave numbers, which is strongly influenced byG and
which is directly related to the isotropic case, and anoth
occurring at low wave numbers which is hardly affected
G ~see also Fig. 6!. It is then easily seen that the latter b
comes dominant at some value ofG near the absolute stabil
ity limit. This is shown in Fig. 7. The new instability persis
even far beyond the absolute stability limit of the isotrop

ti-
or
e

he

FIG. 4. Marginal stability diagram in theM 21–G in the isotro-
pic case (k50.1). The plotted lines correspond to the local maxim
of the neutral stability curve. The point of intersection with theG
axis ~at Gs510) is the point of absolute stability.
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case as shown by Fig. 8. This figure also indicates that, in
presence of kinetic anisotropy, the absolute stability limit
longer exists~at least not in terms of the coordinatesM and
G).

For fixed temperature gradientG, the parametersM, G,
and b depend on the dimensional parametersC` and V,
which are more useful for comparison to experiments. F
ures 9 and 10 show the domains of stability in terms of
latter parameters, limited by themarginal stability curves
which are determined by a condition of tangency for t
neutral stability curves. Roughly speaking, the marginal s
bility curves are composed of two branches. The first on
found for low V and can be related to the isotropic ca
~anisotropy slightly stabilizes at very lowV! and it is also
related to the isolas, if they exist. The high velocity bran
lies mainly above the upper part of the marginal stabi
curve of the isotropic case, and is thus beyond the abso
stability limit. It is uniquely due to the presence of kinet
anisotropy. Considering lines of constantC` in Fig. 9, this
gives the following picture: forC` small enough, the plana
front is linearly stable for any velocity. For large enoughC`

FIG. 5. Neutral stability curves near absolute stability of t
isotropic case (G5k21). Parameters: k50.1, G
59.99, 9.995, and 10.0,p50.01, and b5109. Solid lines are
NSC in the isotropic case, dots in the anisotropic case. In the
tropic case, the maximum of the NSC goes to zero and is take
smaller and smaller wave numbers as the absolute stability cur
approached; whenG5k21, it has a horizontal tangent at the origi
In the anisotropic case there is an additional maximum which
comes dominant for the instability for relatively large values ofG.
Figure 6 shows more details of the curve.

FIG. 6. Neutral stability curves computed from the full dispe
sion relation~dots!, computed in the BASL~closely fitted solid
line!, and for the Brattkus-Davis limit in the isotropic case~down-
ward parabola!.
e
o

-
e

-
is

te

it is unstable for some finite interval of velocities, i.e., stab
for very low and for very high velocities. In an intermedia
range, there are two intervals of velocities for which t
planar front is unstable: one for low velocities, reflecting t
classical Mullins-Sekerka instability, and one for high v
locities owing its presence entirely to the kinetic anisotrop
The theory predicts a point, the point of intersection of t
marginal stability curves, where the two phenomena
competing.

In concluding this section, we emphasize the followi
observations. As expected, a small kinetic anisotropy o
yields moderate changes of linear stability, the most imp
tant effect being that the instability modes are traveli
waves of a preferred direction rather than stationary cellu
patterns. The changes can be dramatic if anisotropy is lar
branches of the neutral stability curve can disappear, res
ing in a sudden stabilization of the flat interface. Differe
mechanisms of stabilization and destabilization can arise
eventually become more important than those related to
isotropic case.

o-
at
is

-

FIG. 7. Marginal stability diagram in theM 21–G plane forG
nearGs[k21 (k50.1, p50.01, b5109). Again, the plotted lines
correspond to the local maxima of the neutral stability curve. T
curved line is related to the isotropic case~see Fig. 4!, the horizon-
tal line to the new instability. At the point of intersection of the tw
curves, two modes with different length scales are margina
stable.

FIG. 8. Marginal stability curve in the presence of kinetic a
isotropy. In contrast to the isotropic case, there no longer seem
be an absolute stability limit for the anisotropic model. The curve
the continuation of the one of Fig. 7~note the different scales!.



o
n
g

as

n
m
ea

-
on

le
bil

a

-

ot
lity

nd

es
o

gl

es
ve

th
ola

ve
cu-

wn

5634 PRE 59H. P. GRIMM, S. H. DAVIS, AND B. McFADDEN
III. LONG-WAVELENGTH LIMITS

In this section we look more deeply into the effects
kinetic anisotropy by considering asymptotic expansio
characterized by large wavelengths. Various lon
wavelength limits have been considered in the isotropic c
an overview of which is presented in Ref.@12#; most of the
limits considered here are closely related to them. After a
lyzing the dispersion relation, we shall derive nonlinear a
plitude equations which govern the evolution beyond lin
instability.

A. The Sivashinsky limit

Linear theory.Sivashinsky@11# takes the segregation pa
rameterk to be very small, meaning that the solute rejecti
is almost complete. The NSC is then dominated by 12Ga2,
except for a small boundary layer in the wave numbera ~see
also Fig. 11!. Therefore, we wish to define a length sca
whose asymptotic limit well approximates the neutral sta
ity curve at its maximum. Setk5«2k, G5O(1), andM 21

512m«. There is some freedom for the choice of the sc
ings of the parametersp andb; here we takep5O(«1/2) and

FIG. 9. Marginal stability curves for the parametersV and C`

~arbitrary units!. The planar front is stable to the left of the curv
and unstable to the right. The lower branch appears to be a sm
deformation of the curve computed in the isotropic case~dashed
line!. The upper branch is due to a new instability and is stron
related to the effect of kinetic anisotropy.

FIG. 10. Marginal stability curves for the parametersV andC`

~arbitrary units!. The planar front is stable to the left of the curv
and unstable to the right. The curve for the isotropic case is gi
for uses of comparison~dashed line!. Again ~as in Fig. 9!, the
classical instability is related to the lower part of the curve. For
parameters chosen for this plot the neutral stability curve has is
f
s
-
e,

a-
-
r

-

l-

b5O(«23/2). Consistent scalings fora and s are thena
5O(«1/2) ands5O(«2). The dispersion relation up to lead
ing order then becomes

m2
k1s

a2
2Ga21 i ãa50 ~16!

and we see that the linear stability of the problem is n
affected by the anisotropy at this order. The neutral stabi
curve turns out to be

m~a!5
k

a2
1Ga2 ~17!

on which the Hopf frequencys5 iv varies as

v~a!5ãa3. ~18!

Evolution equation.Let

C5C̄1(
j 51

`

« jCj , ~19!

H5«F ~20!

and solve Eqs.~8!–~10! at successive orders of«. ThenC1
turns out to be

C15Fe2z ~21!

andC2

C252~mF1GFxx1ãFx!e
2z. ~22!

At third order the diffusion equation is inhomogeneous a
we have

C35ge2z2d1ze2z, ~23!

whered1 is determined by the inhomogeneities

oth

y

n

e
s.

FIG. 11. Kinetic anisotropy stabilizes modes with high wa
numbers in a way similar to surface energy. The effect is parti
larly pronounced when the segregationk is small. This makes an
asymptotic limit similar to the one by Sivashinsky possible. Sho
here are the neutral stability curves for various values ofb ~dots!
and for the isotropic case~solid line!. Parameters arek51024, G
50.01, p50.1, andb5300, 150, 100.
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d15mFxx1GFxxxx2~FFx!x1ãFxxx ~24!

andg is determined by the kinetic law. The solute balance
this order imposes the solvability condition

2d15Ft1kF ~25!

yielding the desired evolution equation

Ft1kF1mFxx1GFxxxx1ãFxxx2~FFx!x50. ~26!

Equation~26! was obtained by Younget al. @10# in the
framework of a simpler model for kinetic anisotropy, and
two-dimensional bifurcation analysis shows that nontriv
solutions bifurcate subcritically. The numerical simulati
reveals, as expected, the formation of tilted cells. But
though the shape of the cells seems to converge rapidly a
tips, the roots steepen until breakdown, a problem alre
known from the isotropic case~see Ref.@12#!.

B. Evolution of anisotropy-stabilized modes„EVANST…

Linear theory. In this section we adopt essentially th
same scalings as Sivashinsky@11# or Younget al. @10#, but
we now take anisotropy to be larger@i.e., ã5O(1)#. As we
shall see, this asymptotic limit indicates that anisotropy
nearly sufficient to stabilize long-wavelength modes, thou
a very small contribution of capillarity is still requested
stabilize short-wavelength modes.

We now prefer to write the scaling as follows:M 2151
2«2m, k5«4k, G5O(1), ã5O(1), a5O(«), and s
5O(«3). We look for the neutral stability curve and thus p
s5 iv. When extracting equal powers of the dispersion
lation, we first get atO(«)

v~a!5ãa3 ~27!

and then at the following order

m~a!5
v2~a!

a4
1

k

a2
1Ga2 ~28!

5
k

a2
1~G1ã2!a2. ~29!

Compared to the corresponding result of the preceding
tion, Eq. ~17!, we see that the termG1ã2 plays the role of
an effective surface energy in the long-wavelength appro
mation ~see Fig. 11!. However, when shorter waves are a
lowed,G cannot be set to zero.

Evolution equation.The derivation of the evolution equa
tion requires the consideration of relatively high powers of«.
Introduce a slow time scale by letting] t→«3] t , and expand
the fields as follows:

C5C̄1 (
k51

`

«kCk , ~30!

H5 (
k51

`

«kFk . ~31!
t

l

l-
he
y

s
h

-

c-

i-

The first order yields

C15F1e2z. ~32!

The following order is then solved to give

C25~F22ãF1x!e
2z. ~33!

Next,

C35~F32ãF2x2mF12GF1xx!e
2z. ~34!

At fourth order, where

C45FF42ãF3x2mF22GF2xx1pãF1t

1S ã

p
2

pã

2
DF1x

2Ge2z2S ãF1xxx2
1

2
~F1

2!xxD ze2z

~35!

there is a first condition arising from the solute balance

F1t1ãF1xxx2
1

2
~F1

2!xx50. ~36!

Then, at fifth order

C55~• !e2z2@mF1xx1GF1xxxx2~F1F2!xx1ãF2xxx

2F1F1x
21F1F1t13ãF1xF1xx2ãF1tx#z e2z. ~37!

We do not need the coefficient ofe2z, which could be de-
termined by the kinetic law at this order. But the solute b
ance again imposes an equation, which has to be solved
gether with Eq.~36!:

F2t1ãF2xxx2~F2F1!xx52F1T2kF12mF1xx2GF1xxxx

1ãF1tx2ã~F1x
2!x . ~38!

Below, we develop both a weakly nonlinear analysis, reve
ing the bifurcation structure near the onset of the linear
stability, and a strongly nonlinear analysis, making pred
tions on the emerging interface shapes.

Bifurcation analysis.For the computation of the Landa
equation of the critical modes, we combine Eqs.~36! and
~38! by writing u5F11eF2. Then, with a new small param
eterd, «5d2, we get the equation

ut1ãuxxx2
1

2
~u2!xx

1d2$ku1Guxxxx1muxx2ãutx1ã~ux
2!x%5O~d4!.

~39!

Introduce the multiple time scales] t5] t0
1d2] t2

1d4] t4
1•••, m5mC1d2m21•••, and expandu5dv11d2v2
1d3v31•••. From linear theory, the values of the critic
wave number, the critical frequency and the critical cont
parameter are known,



s

th

is
th
on
y
is
on

a
e-

g

g
t

i
io

f
ida

I
th
n
m

-
ig
r
si

our
we
of

nt
est-
ifur-
me

ery

th
-

e

sion

on

be

os-

for

5636 PRE 59H. P. GRIMM, S. H. DAVIS, AND B. McFADDEN
aC
2 5A k

G1ã2
, ~40!

vC5ãaC
3 , ~41!

mC52AkAG1ã2. ~42!

The critical modes are traveling waves with phase speed

c5
vC

aC
5ãA k

G1ã2
. ~43!

We expand Eq.~39! and solve order-by-order in«. The first-
order equation is the linear problem with the solution

v15AeiaCx1 ivCt01c.c. ~44!

At second order, the problem may be solved explicitly,
amplitudes turning out to be products inA and Ā. At third
order there is a solvability condition

At2
5

i

3ã
A4 k

G1ã 2
AuAu2. ~45!

The coefficient of the cubic term is imaginary, so that th
equation does not give any information concerning
modulus ofA, but it gives an amplitude-dependent correcti
to vC ~or to the velocityc!. The fourth-order equation ma
again be solved explicitly, and finally at fifth order there
another solvability condition which is the Landau equati
that we have been seeking. After rescaling of the timet4 it
can be written as

At4
5~m21 im i !A2

1

2 S 32
G

ã2D AuAu21 ibAuAu4, ~46!

where b and m i are real constants, again contributing to
correction ofvC . Note thatm i appears as the only cons
quence of the high-order terms summarized asO(d4) in Eq.
~39!. The coefficient of the cubic term is real and can chan
its sign. If ã is large enough with respect toG, then the
bifurcation is supercritical, meaning that small travelin
wave solutions are expected to be observed beyond
threshold of linear instability. Ifã is small we recover the
subcritical bifurcation of Sivashinsky~see previous section!.
Roughly speaking, we could say that in this particular lim
the effect of anisotropy is to promote a smooth transit
from the flat interface to a corrugated one.

Strongly nonlinear analysis.The bifurcation analysis o
the previous section predicts the amplitude of sinuso
front shapes close to the threshold of linear instability.
does not give any indications concerning the shape of
interface when nonlinear effects become more importa
The strongly nonlinear analysis of this section has so
similarities with the work of Merchantet al. @18# for a flat
pulsating solidification front in the context of rapid solidifi
cation. It appears to be even closer to the recent invest
tions of Golovin and Davis@16# on a model of anisotropy fo
solidification into a hypercooled melt; its mathematical ba
e

e

e

-
he

t
n

l
t
e
t.
e

a-

s

was elaborated by Bar and Nepomnyashchy@19#. It turns
out, however, that the great number of parameters in
problem makes conclusive statements rather difficult, and
shall therefore not investigate the question of selection
amplitudes and velocities of the emerging patterns.

Let us focus on Eq.~36!. When looking for traveling-
wave solutions of the form

F1~ t,x!5u~ct1x!, ~47!

and after integrating once,u is found to be governed by

cu1ãu95uu8, ~48!

or formulated as a first-order ODE:

q85p, ~49!

p85ã21q~p2c!. ~50!

A first integral for this system is easily found in the form

K5
1

2ã
q22p2clnup2cu. ~51!

Solutions of Eq.~48! are then given as contours of consta
K. For small amplitudes, they are nearly sinusoidal, sugg
ing a cell-shaped interface shape, as predicted by the b
cation analysis. For larger amplitudes, these cells beco
more and more tilted and finally, as the amplitude gets v
large, they are more and more facetlike~see Fig. 12!. The
front is then composed of nearly linear pieces (p'c) con-
nected by sharp variations~where bothq andp vary rapidly!.
This reflects the conflict of the interface trying to align wi
the crystal lattice while still remaining close to its equilib
rium position.

C. The Brattkus-Davis limit

Linear theory. In the isotropic case, the critical wav
number and the critical value ofM 21 both tend to zero as
G→k21, and finally all modes are linearly stable whenG
5k21 ~see Fig. 5!. This limit, the absolute stability limit,
already mentioned in the general discussion of the disper
relation above, was used by Brattkus and Davis@13# for the
derivation of a strongly nonlinear long-wavelength evoluti
equation by setting«5k212G, M 215O(«2), k5O(1),
andG5O(1). Wave number and growth rate are then to
taken asa5O(«1/2) ands5O(«). If we now try to take into
account the effect of anisotropy, two scalings seem to p
sible for p and b. Either we take p5O(«1/2) and b
5O(«25/2) or p5O(1) andb5O(«23/2), both yielding

FIG. 12. Two solutions of Eq.~48!. Small-amplitude solutions
are sinusoidal whereas strongly preferred orientations develop
large amplitudes. The latter resemble facets.
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M 215a22
1

k2
@k~s1a2!1a2#~a21s!1 i ãa. ~52!

A problem arises when looking at the neutral stability cur
in this limit. Sets5 iv and separate the above equation in
real and imaginary parts

M 215a22
11k

k2
a41

v2

k
~53!

and

v5
ãk2

112k
a21. ~54!

We see that this scaling is inappropriate, asṽ}a21, and thus
even for smallã there is always a band of unstable lon
wavelength modes. There is no simple way to circumv
this problem, but much is explained by the scaling develo
in the next section.

D. Beyond the absolute stability limit „BASL…

Linear theory.The presence of anisotropy gives rise to
new long-wavelength limit unrelated to any limit of the is
tropic case, stemming from the additional maximum of t
neutral stability curve mentioned earlier in the discussion
the dispersion relation. Let us scale as follows:M 21

5O(«2), p5O(«), b5O(«24), a5O(«), and v5O(«).
We determine the neutral stability curve by puttings5 iv.
At order «2 we get

M 215~k212G!a21
v2

k
. ~55!

v is determined at the following order by solving

v31a2v2
ãk2

112k
a50. ~56!

The resulting curvev5v(a) then grows asa1/3 at the ori-
gin, and after having reached a maximum decays asa21.
The neutral stability curve in terms ofM 21 therefore has a
vertical tangent at the origin, which is rather unusual. This
corrected by terms of the following order which introduce
singular perturbation near the origin. A more important o
servation is that we need to haveG>k21 in order to make
this limit work ~although we may get an accurate descript
of the neutral stability curve near the origin whenG,k21).
In terms of the isotropic case we are here working beyo
the absolute stability limit (G5k21). Figure 6 shows a com
parison of the approximated and the full neutral stabi
curves. Note that the most important contribution to the n
tral stability curve is now given by the frequency termv(a).
Numerical as well as asymptotic results seem to indic
that, in terms ofG andM, there is no absolute stability limi
anymore~see Fig. 8!. In terms ofV andC` , the instability is
related to the upper~high velocity! branches of the margina
curves of Figs. 9 and 10.
t
d

e
f

s

-

d

-

te

Evolution equation.We allow amplitudes of unit order fo
H and expand the deviations from the basic state~12! in an
asymptotic series:

H5(
j 50

`

« jF j , ~57!

C5C̄1(
j 51

`

« jCj , ~58!

and introduce two time scales by setting] t→«] t1«2]T . At
first order, the diffusion equation together with the solu
balance yields

C15F0te
2z ~59!

with which the equation for the interface dynamics is sa
fied identically. At second order we may determine coe
cientsgk depending onF0 such that

C25 (
k50

2

gkz
ke2z ~60!

satisfies the diffusion equation and the solute balance at
order

g052
1

k
~F0xx1F0tt!, ~61!

g15F0T1F1t2F0xx2F0tt2F0x
2 , ~62!

g252
1

2
~F0t

21F0tt!. ~63!

Interfacial kinetics now imposes the condition

~p1F0x!$F0tt1kM21F0%50 ~64!

and for consistency we require the second expression to
ish, which is achieved by setting

F0~ t,T,x!5A~T,x!eiv0t1Ā~T,x!e2 iv0t, ~65!

v05AkM21. In a similar way as at the previous orders w
solve the diffusion equation and the solute balance at th
order by the ansatz

C35 (
k50

3

dkz
ke2z ~66!

and after determination of the coefficients, the kinetic bou
ary condition becomes

F1tt1kM21F11LF01N~F0!2ã
F1x

11F1x /p
50, ~67!

where we have divided by 11F1x /p. L andN are given by

LF52FTt1~112k!M 21Ft2
112k

k
Ftxx1kFxx ,

~68!
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N~F !5FtFxx13kM21FFt22FxFtx . ~69!

For evident reasons there is a solvability condition of
form

2v0AT1
112k

k
v0

3A2
112k

k
v0Axx1 ikãAxR~ uAxu!50,

~70!

whereR is given by the integral

R~x!5
1

pE0

2p cos2 t

p12x cost
dt. ~71!

Bifurcation analysis.A plot of the functionR in Eq. ~71!
is shown in Fig. 13. A power series developed aboutx50
shows that there is no linear term inx and the sign of the
quadratic term is positive. This is sufficient to tell us that t
underlying bifurcation problem for the critical modes giv
only subcritical bifurcations.

Absent from this analysis are other nonlinearities, as
pear in the Brattkus-Davis limit. They can be included
using different scalings ofH and C. It turns out that the
coefficients of the these nonlinear terms are such that the
not significantly influence the bifurcation behavior~i.e., the
corresponding contribution to the Landau coefficient rema
imaginary!.

E. The Riley-Davis limit

Linear theory.A further case which we would like to tak
into consideration is the scaling used by Riley and Da
@12#: «5G21/2, M5O(1), k5O(«2), a5O(«), and s
5O(«2). We choosep5O(«) andb5O(«21), leading to

M 21512
k1s

k1s1a2
2a21 i ãa. ~72!

Splitting this equation into real and imaginary parts allows
to get the neutral stability curve

M 21~a!5
1

2~k1a2!
$~122~k1a2!!a2

6Aa424ã2a2~k1a2!2% ~73!

FIG. 13. Plot of the functionR(x) for p51.
e

-

do

s

s

s

on which the Hopf frequencyv is given by the following:

v~a!5ãa3$ã2a21~M 211a2!2%21. ~74!

Obviously the two branches do not exist for all values ofa,
suggesting that they approximate the isolas described ab
~see Fig. 3, for example!. The curves only exist for values o
k and ã for which

kã2,
1

16
. ~75!

On the other hand, we recover the form of the neutral sta
ity curve of the unperturbed case by simply puttingã50,
though this perturbation is singular.

Evolution equation.In this limit we are no longer allowed
to work on the basis of the known solutionC̄ which imme-
diately complicates the involved terms. Our ansatz for
solution is now

H5F, ~76!

C5C01«2C11••• ~77!

giving the following solution forC0 at leading order:

C0512Ae2z ~78!

with A being defined as

A512M 21F1Fxx1ã
Fx

11Fx /p
. ~79!

The diffusion equation at first order is inhomogeneous, a
its solution may be written as

C15ge2z1d2ze2z. ~80!

g could be determined by the equation for the interface
netics, but we shall not need it here.d2 is found determined
by the diffusion equations to be

d25At1FtA2Axx22FxAx2FxxA2Fx
2A. ~81!

It is the solute balance which imposes the solvability con
tion, which turns out to be

At2Axx2FxAx2FxxA2k~12A!50 ~82!

or, in its expanded form,

Ft2MFtxx1MFxxxx1~M212kM!Fxx1kF2
1

2
~F2!xx

1
M

2
~Fx

2!xx5ãM @Bt2Bxx1kB2~FxB!x# ~83!

with

B5
Fx

11Fx /p
. ~84!

Bifurcation analysis.Near the onset of instability, we de
rive a Landau equation for the amplitudeA of the single
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mode eiaCxeivCt. The evolution of the amplitude, which i
supposed to vary on a slow time-scalet, is governed by the
Landau equation

At5lA1bAuAu2. ~85!

l measures the departure from equilibrium, whereasb has to
be computed; the general formulas are displayed in the
pendix. Depending upon the sign ofb there are subcritica
(b.0) or supercritical (b,0) bifurcations. Results of the
computations are displayed in Fig. 14. First, note that~as
mentioned above! the neutral stability curve does not exi
for kã2. 1

16 . On the other hand the figure shows that,
expected, the results of the isotropic case are recovered w
ã→0, i.e., that the bifurcation is supercritical fork. 1

9 and
subcritical otherwise. The most important change of the
furcation structure is that supercritical bifurcations now o
cur also for smallk, if ã is large enough.

IV. CONCLUSION

Our investigations are based on a version of a class
one-sided model of directional solidification of a dilute allo
@17# including effects of kinetic anisotropy. In contrast to th
physics of the underlying model, which is dominated by d
fusion, mass conservation and surface energy, the m
ematical formulation of the kinetic law relies upon consid
ations of the microscopic process of atoms or molecu
attaching to step sites of a vicinal surface. Linear the
reveals three principal features associated with the new
fects which connects the parts of this paper:~i! The possibil-
ity of multiple branchesof the neutral stability curve, leadin

FIG. 14. Bifurcation structure in the Riley-Davis limit for th
parametersk and 1/b, with p50.1. The bifurcation is supercritica
in the black zone and subcritical in the white zone. There is
neutral stability curve for this limit in the gray zone, and our ana
sis does not apply. Note that we recover the transition from s
critical to supercritical bifurcations of the isotropic case (1/b50)
which takes place atk51/9.
p-

s
en

i-
-

al

-
th-
-
s
y
f-

to the formation of isolas in some ranges of the parame
space,~ii ! the importantstabilizationof the plane front in the
case ofsmall segregation coefficients k, and~iii ! destabiliza-
tion by the presence of a novel mode, typically related
high velocities Vand low wave numbers.

In the wake of former asymptotic analyses of the isotro
model~Refs.@11–13#! we find asymptotic expansions of th
dispersion relation which give some insight to the three
servations stated above. Working with the scalings es
lished for the linear theory, we then derived equations for
evolution beyond the threshold of instability.

As far as linear stability is concerned, only in the case
the Riley-Davis limit~see Ref.@12#! does the straightforward
inclusion of the anisotropy terms within the asympto
analysis of the isotropic case lead to interesting results
gives a good description of the isolas and their extincti
The nonlinear evolution equation we find in this case tu
out to be very complicated and we therefore restricted
attention to the investigation of the type of bifurcation. Bo
subcritical and supercritical bifurcations are found, and
contrast to the isotropic case, supercritical bifurcation is a
possible for small values ofk.

The Sivashinsky limit~see Ref.@11#! only predicts that
the most unstable modes are traveling waves instead of
tionary cells, but leaves the neutral stability curve un
fected. While this limit is modified in a way that emphasiz
the fact that the critical modes are traveling waves, one s
that anisotropy strongly to stabilizes the planar front
small k. The eigenfunctions of the linear problem as well
comparison to the parent problem of directional solidificati
in presence of a shear flow@3# indicate that the physica
explanation of this effect is a phase shift between interf
deformations and the concentration profile. A first nonline
evolution equation for this limit turned out to be the same
investigated by Younget al. @10# for a similar, but simpler
model. The results they had obtained were that tilted c
bifurcate subcritically from the planar solution. In our mod
fied version of this limit~i.e., when anisotropy is taken to b
stronger!, the subcritical bifurcation of Sivashinsky can b
come supercritical, i.e., that the interfacial pattern can app
in a smooth transition from the flat solidification front. Fu
thermore, a strongly nonlinear analysis predicts that the
terface forms a periodic ‘‘facetlike’’ structure for larger am
plitudes.

The Brattkus-Davis limit~see Ref.@13#! breaks down
when the anisotropy terms are added naively, due to the p
ence of a novel instability which occurs on a different sca
The limit is applicable near the absolute stability limit of th
isotropic case, i.e., near the complete stabilization of the
nar interface by surface energy, but it cannot take into
count the new instability which is almost unaffected by t
presence of surface energy. We show how to establish a l
describing the new instability which is now purely due to t
kinetic anisotropy~although capillarity can be included i
the description!. Thus, it seems that the tendency of the
terface to align with the crystal direction by the effect
attachment kinetics is now stronger than any influence of
capillarity. It seems to be plausible that, at the high rates
solidification where the phenomenon occurs, the energy
lated to the attachment of the atoms dominates over sur
energy. We do not give a detailed analysis of the evolut

o
-
-
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equation that we derive in connection with this novel ins
bility, and which could be called ‘‘strongly anisotropic.
However, a bifurcation analysis indicates that periodic so
tions appear subcritically beyond the point of linear instab
ity, and thus that we do not expect them to appear smoo
at the threshold of linear instability.
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APPENDIX: THE LANDAU COEFFICIENT
IN THE RILEY-DAVIS LIMIT

Defining

l 052kMC
21 , ~A1!

l 15~2ivC14aC
2 1k!~24aC

2 2MC
2112i ãaC!14aC

2 ,
~A2!
t.

-

s.
-

-
-
ly

-

i-

n052
2kã

p
aC

2 , ~A3!

n2522aC
2 ~MC

211aC
2 !1

ã

p
aC

2 @k14aC
2 12i ~vC1paC!#,

~A4!

SĀB52aC
2 MC

2112aC
4 2

4ã

p
aC

2 @k1aC
2 1 i ~vC1paC!#,

~A5!

SAC5aC
2 MC

21 , ~A6!

SCC5
3i ã

p2
aC

3 @k1aC
2 1 i ~vC1paC!#, ~A7!

R5aC
2 1MC

212 i ãaC , ~A8!

the Landau coefficient in Eq.~85! is given by

b52
1

R S SCC2SĀB

n2

l 2
2SAC

n0

l 0
D . ~A9!
th
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